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This article examines an external inverse heat,conduction problem on determining 
thermal parameters which are variable over time and along a boundary. 

Since mathematical models are generally inadequate for fully describing thermal processes, 
identification of the parameters of a thermal system (parametric identification) usually en- 
tails simultaneous solution of a problem of structural identification (refinement of the 
mathematical model itself). Naturally, the structural identification is the more complicated 
task. Thus, to reduce its importance in the overall problem, when constructing the model it 
is necessary to account as fully as possible for all internal relationships, thermophysical 
characteristics and external effects. In particular, in solving the internal inverse heat- 
conduction problem, it is best to determine not the mean values of the characteristics but 
values dependent onthe space and time coordinates. The latter instance more accurately re- 
flects processes actually occurring in objects with distributed parameters. Such processes 
are usually described by an imprecise structural model [i] which, in the most general formu- 
lation, is nonlinear and requires linearization -- since it is necessary to construct transfer 
matrices to describe a nonsteady thermal process in the form of a dynamic recursion system. 

When methods of statistical identification are used, it is expedient to also employ 
statistical linearization, entailing the best probability approximation of nonlinear relations 
by relations linearized on the basis of normalization of the laws of the distribution of ran- 
dom processes [2]. A simple and adequate course of action here is to replace the nonlinear 
part of the initial equation f[X(~), U(~)] by the sum A(mx, Px, T)X(T)§ Px, T) U(T) , where 

m X is the vector of the mathematical expectation of the random vector of state X; PX is its 

covariant matrix. A more accurate linearized relation can be represented by the expression 

A(m x, Px, ~)X(G + fo(mx, Px, ~)= A(m x, Px, ~)mx+ B(m x, .Px, ~) U(~), 

where fo is a vectorial statistical characteristic of nonlinearity, i.e., a function of the 

probability moments of the variables X.. The norm of the vector fo --Am X is sufficiently 
l 

small. The components of the matrices A and B and the vector fo can be found from the cri- 
terion of the minimum of the mean square error [3]. In the formulation being considered, 
the vector of state will include the desired local heat-transfer parameters, which vary along 
the boundary. It should be noted that, in identifying local parameters (such as heat-~rans- 
fer coefficients variable over the contour of the investigated region), we deal with individual 
closed contour loops which are joined together into a single multiple-connected automatic con- 
trol system. The number of loops, meanwhile, is determined by the number of sections of the 
surface being investigated within which the heat-transfer parameters are taken as constant. 
In other words, since determining the local boundary conditions requires making allowance 
for the correlations between all of the control loops, it is best to include characteristic 
temperatures of each of the investigated local regions in the measurement vector. Thus, the 
object function, which has to be constructed, should include all of the sought parameters 
and the results of temperature measurements. 

Since the problem being examined is an imperfectly stated problem, some means must be 
provided to allow for regularization of the solutions obtained. Snch means may include 
preassignment of the character of the sought relations (especially their constancy over time) 
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TABLE i, Identification of ~, W/(m2"deg), of a Turbine 
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Fig~ i. Tube jacket of a cooled gas flue in a 

fluidized-bed furnace. 
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Fig. 2. Determination of a local heat-transfer coefficient on 

the inside surface of the casing of a steam turbine. T, h; ~, 
W/(m2-deg). 

or limitations on the parameters of the algorithm (for example, having the number of itera- 

tions in the iteration process correspond to the error of the initial data). We will demon- 
strate the above-described approach to solving imperfectly stated problems using the example 
of realization of optimum-filtration algorithms: noniterative [4] in the case of constancy 
of the sought parameters, and iterative [5] when there is no a priori information on the 
character of the curves being identified. 

In identifying local heat-transfer parameters, we are in one sense optimizing a multiple- 

connected control system when we realize the optimum filtration procedure, i.e., we are taking 

the most general approach, allowing for the interaction of all of the quantities which 
determine the behavior of the object being identified. 

When heat-utilizing units are being designed, it is necessary to determine the optimum 
spacing (H) between the cooled tubular elements (Fig. i). This cannot be done without 

reliable information on heat-transfer conditions on the inside surfaces of the cooled ele- 
ements in the gas channel. To obtain such information, it is insufficient to determine the 
average heat-transfer characteristics. Data on the local coefficients ~I and ~2 is needed. 

Since all of the tubular elements of the unit being examined operate under the same 
conditions, we will look at part of a cooling jacket within one row of tubes. The tempera- 
ture was measured at the points indicated in the figure. 

The results of temperature measurement for the middle section of the gas channel are 
shown in Table i. The problem consists of determining the heat-transfer coefficients, which 
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vary along the boundary but are constant over time. Here, T = 630~ The heat-transfer 
m 

conditions on the side of the cooled surface were as follows: So = 2.104 W/(m2"deg); Tmo = 

170~ ~i = 50 W/(m2"deg); Tmi = 20~ The thermophysical characteristics of the material: 

= 50 W/(m2.deg); c V = 3.834.106 J/(m3"deg). 

The results of the identification are also shown in Table I. 

Comparison of the solution of the direct problem with the resulting ~i and ~2 against 
the initial data showed that the calculated temperatures differ little from the experimental 
values (the difference does not exceed 0.5%; not only at points i, 2, and 3 -- used in solving 
the inverse heat-conduction problem -- but at point 4). 

In conclusion, we should note that reliable data on heat-transfer conditions make it 
possible to accurately design the necessary number of cooling elements and to accordingly 
reduce the metal content of cooling systems. 

Local heat-transfer coefficients varying over time were determined by the above approach 
on the inside surface of a flange on the casing of a K-300-240 high-pressure steam turbine 
built by the Kharkov Turbine Plant. The thermophysical characteristics of the material of 

the flange: ~ = 56.82 -- 0.02.T W/(m'deg); c V = 3.494"106 + 3.375.103.T J/(m3'deg). We took 

averaged boundary conditions ~e = 0.4 W/(m2"deg), Tme 20~ on the external surface of the 

casing. The measurement error was assumed to have corresponded to a normal distribution of 

the random variables, while the standard deviation o = (0.03-0.05)Tma x. The measurements 

were made at internal points of the flange. We identified values of ~ = {~i, ~2} in the 

startup regime (T = 0.00745T+200~ (Fig. 2a), which covered 6 h. The chosen time inter- 
m 

val AT = i0 min (AFo = 0.6). Figure 2b shows the identified relations ~i (curve 4) and ~2 

(curve 2) and the corresponding standard curves 1 and 3. 

To study the stability and convergence of the identification process, the object was 
placed under unnatural conditions. Here, we chose a standard function ~2(T) which did not 
fully correspond to the actual processes which occur (curve 5), while ~z(T) remained as 
before. In this case, as in the preceding instance, the identification process was 
stable (curve 6 -- approximate relation). 

NOTATION 

f, nonlinear function; A, B, matrices; X, vector of state; U, control vector; mx, 
§ 

mathematical expectation of the vector X; ~, vector of the parameters being identified; ~, 

heat-transfer coefficient; Tm, ambient temperature; ~, thermal conductivity; Cv, volumetric 

specific heat; T, temperature; o, standard deviation; T, time; AT, time interval; AFo, 

dimensionless time interval (increment in the Fourier number). 
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